Deepcell Closes $20 Million Series A

MOUNTAIN VIEW —  Deepcell, a life science company pioneering AI-powered cell classification and isolation for cell biology and translational research, has closed a Series A round with $20 million, led by Bow Capital and joined by Andreessen Horowitz, which led its $5 million seed round. The new funding will allow Deepcell to develop its microfluidics-based technology, continue building a cell morphology atlas of more than 400 million cells, and drive a hypothesis-free approach to cell classification and sorting.

Spun out of Stanford University in 2017, Deepcell is using deep learning and big data to classify and isolate individual cells from a sample. The technology combines advances in AI, cell capture, and single-cell analysis to sort cells based on detailed visual features, delivering novel insights through an unprecedented view of cell biology. The Deepcell platform maintains cell viability for downstream single-cell analysis and can be used to isolate virtually any type of cell — even those occurring at frequencies as low as one in a billion — to offer access to rare cells and atypical cell states that will help advance precision medicine research.

Other investors in the funding round include 50Y, DCVC, Stanford University, and angel investors, including Google’s head of AI Jeff Dean.

“From its early days in my lab to its launch as a startup, the Deepcell technology has offered the exciting potential of characterizing, identifying, and sorting cells without perturbation,” said Euan Ashley, Professor at Stanford and co-founder of Deepcell. “Identifying and isolating cells on a spectrum, all the way down to ultra rare, harbors unprecedented potential for understanding single-cell biology and for advancing precision medicine.”

With its AI-powered approach, Deepcell’s technology is able to differentiate among cell types with greater accuracy than traditional cell isolation techniques that rely on antibody staining or similar methods. The company’s AI identifies cells based on infinitesimal morphological differences that may not be visible to the human eye, and continually improves through a closed-loop process in which results from each analysis are fed back into the AI to hone its performance.

Unlike other approaches, Deepcell’s technology was developed to isolate and collect label-free cells of any type, keeping the cell intact for downstream biological characterization. By targeting whole cells instead of cell-free DNA, the Deepcell technology gives users access to cell-specific information — a view of the cell’s full DNA, RNA, epigenetics, and protein contents — and the ability to understand cellular heterogeneity in rich detail.

“By taking cell morphology into the digital age, Deepcell has the potential to revolutionize the field, in a similar way that high-performance computing enabled dramatic advances in genomics and transcriptomics,” said Vijay Pande, General Partner at Andreessen Horowitz.

Maddison Masaeli, co-founder and CEO of Deepcell, said: “Cell morphology is a phenotype with a long history in clinical application that has to date been based on the eyes of a human expert. Deepcell is bringing this phenotype into modern use by adding scale, interpretability, and actionability, thanks to our innovations in AI, microfluidics, and multiomics.”